问题 A: [NOIP2018 提高组] 铺设道路-D1
题目描述
## 题目描述
春春是一名道路工程师,负责铺设一条长度为 n 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di 。
春春每天可以选择一段连续区间 [L,R] ,填充这段区间中的每块区域,让其下陷深度减少 1。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 0 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 0 。
## 输入格式
输入文件包含两行,第一行包含一个整数 n,表示道路的长度。 第二行包含 n 个整数,相邻两数间用一个空格隔开,第 i 个整数为 di 。
## 输出格式
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
## 样例 #1
### 样例输入 #1
6
4 3 2 5 3 5
### 样例输出 #1
9
## 提示
【样例解释】
一种可行的最佳方案是,依次选择:
[1,6]、[1,6]、[1,2]、[1,1]、[4,6]、[4,4]、[4,4]、[6,6]、[6,6]。
【数据规模与约定】
对于 30% 的数据,1 ≤ n ≤ 10 ;
对于 70% 的数据,1 ≤ n ≤ 1000 ;
对于 100% 的数据,1 ≤ n ≤ 100000 , 0 ≤ di ≤ 10000 。